

2025 NASA Student Launch Team 509: Payload

Design Review 5

Authors: Matthew Archibald, Donovan Dwight, Nathan Hardie, Kyle Mahoney, Neil Maldonado

Everyone

Team Introductions

Matthew Archibald ME – Fabrication Engineer

Donovan Dwight ME - Test Engineer

Nathan Hardie CE -Communications Systems Engineer

Kyle Mahoney ME – Structural Engineer

Neil Maldonado EE - Data Systems Engineer

Donovan Dwight

Faculty Sponsor and Advisor

<u>Sponsor</u> Shayne McConomy, Ph.D. ME – Teaching Faculty II <u>Advisor</u> Taylor Higgins Ph.D. ME – Assistant Professor

Department of Mechanical Engineering

Project Objective

Design and Integrate a payload into a high-powered rocket for the 2025 NASA Student Launch Competition.

Presentation Outline

- Project Overview
 - Critical Design Attributes
- Initial Design Overview
 - Design Concerns
 - Subscale Testing
- Final Design Overview
 - Structural
 - Electronics and Software
- Testing
- Budget and Future Work

Donovan Dwight

Project Overview

2025 NASA Student Launch

- Annual competition for universities nationwide
- Design, build, test, and fly and high-powered rocket
- New payload experiment every year

Payload Experiment Goals

- Collect a variety of flight data
- Transmit data via radio signals
- Safely transport four "STEMnauts"

Assumptions

- Fair weather conditions
 - Wind speed: <12mph
 - No precipitation
 - 40-90°F
- Rocket functionality
- FTM-300DR Transceiver

Matthew Archibald

Critical Design Attributes

STEMnauts subjected to no more than 12 G's

Minimum pullout load of 104 lbf

Minimum of 3 flight parameters collected

Transmission frequency range between 144 MHz to 148 MHz

Presentation Outline

- Project Overview
 - Critical Design Attributes
- Initial Design Overview
 - Design Concerns
 - Subscale Testing
- Final Design Overview
 - Structural
 - Electronics and Software
- Testing
- Budget and Future Work

Matthew Archibald

Initial Design Overview

Structural Design Overview

- Structural Body
- Mounting Method
- Chambers
- Electronics

Electrical Design Overview

- Electronics Trays
- Sensors
- Transmitter
- Antenna

Initial Design Concerns

Concerns

- Uncertainty with fastening method
- Excessive vibration
- STEMnauts not secure
- Messy wires
- Long assembly time

Matthew Archibald

Matthew Archibald

Subscale Flights

Subscale Flights 1 & 2

- **Recovery System Failure** •
- Heat inserts in Nylon 12 parts performed remarkably ٠
- Demonstrated flight stability ٠

Subscale Fight 3

- Demonstrated successful recovery •
- Adversarial terrain

Successful recovery of payload mass simulator

terrain

Presentation Outline

- Project Overview
 - Critical Design Attributes
- Initial Design Overview
 - Design Concerns
 - Subscale Testing
- Final Design Overview
 - Structural
 - Electronics and Software
- Testing
- Budget and Future Work

Matthew Archibald

Revised Structural Design

Payload Structure

- Removed mounting bracket
- Reduction in screw amount & size
- Chamber divider tracks
- Vibration proof tabs & slots

STEMnaut Structure

- STEMnauts (4x) containing IMU's
- Tapered rail
- Locking screws

Archibald

Matthew

Neil Maldonado

Electronics & Sensor Overview

RF Module & Microcontroller

• LightAPRS

<u>Sensors</u>

- Paralax M55607 Barometric Altimeter
- Payload IMU BNO085
- STEMnaut IMU FSM300

Electrical Connections

- Intra-Tray Connections: Pin headers solder to Perfboards
- Inter-Tray Connections: 4-pin Molex KK cables for cross tray connections
- Screw Switches
- LED Indicators

Inertial Measurement Unit

Screw Switch

2025 NASA Student Launch: Payload

Sensor Fusion

Sensor Fusion

- Kalman Filter
- IMU
- Altimeter
- GPS

Single Sensor Data

- Temperature
- Power
- Time

Neil Maldonado

Neil Maldonado

Software

User Interface

- Command Line Interface
- Diagnostics and pre-flight checks

Hardware In the Loop Testing

- Simulate mock-flights on the ground
- Backdoors on peripheral readings

Logging

- Data logging on a micro-SD card
- Analysis of rocket flight profile
- History of payload software milestones for debugging

>sensorCheck altimeter >zeroAltimeter >simulateFlight >readyForLaunch

Example Payload Commands

Backdoor System for Simulation

Neil Maldonado

Rocket Recovery Subsystem (RRS)

Launch Site

directional

antenna

Single & multi-

Situation

- Subscale Flight 3 near loss of vehicle
- GPS and high-power RF hardware on board to aid recovery efforts

Solution

- The RRS program upon landing transmits GPS
- Low GPS visibility will transmit, chirps to the directional antenna

Landing Site Payload sends GPS or chirp transmissions

Presentation Outline

- Project Overview
 - Critical Design Attributes
- Initial Design Overview
 - Design Concerns
 - Subscale Testing
- Final Design Overview
 - Structural
 - Electronics and Software
- Testing
- Budget and Future Work

FEA Testing

- Structural integrity of the flanges
- Analyzed worst case landing condition

Horizontal Displacement Testing

- Displacement of Separators
- Integrity of electronic boards

Budget Updates

AIAA Budget

- Source of funds for all purchases thus far
- Remaining funds will be re-allocated to Team 508

COE Budget

- Plans to use for testing
- More than \$500 to be spent on Nylon-12 for backup payload parts
- Remaining funds will be re-allocated to Team 508

Future Work

- Flight Readiness Review (FRR) report March 17
- Continued Testing
 - 1. IMU/Altimeter verification
 - 2. Rocket Recovery System (RRS testing)
 - 3. Impact Testing
 - 4. Vibrational Testing
- First Launch TBD

Thank you for listening!

Design a payload with a built-in factor of safety for the STEMnauts

Transmit flight data after landing which ensures the success of the flight

Subscale Flights

Intact heat inserts post launch

Subscale Flights 1 & 2

- Recovery system failure
- Heat inserts in nylon-12 parts performed remarkably
- Demonstrated flight stability of the rocket with payload mass simulator

Subscale Flight 3

- Demonstrated successful recovery of the payload mass simulator
- Locating the rocket took several hours due to auditory locator failure and adversarial terrain

Successful recovery of payload mass simulator

Kyle Mahoney

Adversarial

terrain

Nathan Hardie

Electronics Design

Electronics Modules

- RF Module & Microcontroller LightAPRS: Specifically designed for 2-Meter band
- Alitmeter Paralax MS5607 Barometric Altimeter
- Payload IMU BNO085: Accelerometer, Orientation, Sensor Fusion
- STEMnaut IMU FSM300: Small size to fit onto the STEMnauts

Electrical Connections

- Intra-Tray Connections Perfboards with soldered connections, pin headers for breakout boards
- Inter-Tray Connections 4-pin Molex KK cables to connect the trays to one another
- Switches and Indicators Screw switches and LEDs

<u>LightAPRS</u> – Contains the Microcontroller and RF modules for the payload.

<u>Screw Switch</u> – Used as a secure switch to power on and arm the payload.

<u>Molex KK Cable</u> – Connector will be soldered each tray's perfboard (left) and cables connect the trays (right).

Perfboard – Used to make permanent connections between pins. Pin headers are used to securely fasten breakout boards.

Matthew Archibald

Initial Design Overview:

Structural Design Overview

- Structural Body SLS-printed Nylon-12
- Mounting Method AL6061 bracket, epoxied to nosecone
- Chambers Three separate areas for Data collection, Transmission, and STEMnauts
- Electronics Stored on trays inside the capsule

Electrical Design Overview

- Electronics Trays RF, Sensor, STEMnauts
- Sensors Payload IMU, Altimeter and STEMnaut IMU's connected via I2C
- Transmitter APRS tracker
- Antenna 50cm copper wire

Nathan Hardie

FAMU-FSU

College of Engineering

Electronics Block Diagram

2025 NASA Student Launch: Payload

27

Nathan Hardie

Data Collection Design

Sensor Fusion by Multi-Sensor Kalman Filter

- IMU Readings Accurate dead-reckoning navigation
- Altimeter Readings Frequent vertical positioning
- GPS Readings Provides infrequent absolute positioning
 Single Sensor Data
- Temperature Readings Temperature sensor on the Altimeter
- **Power Readings** Power supply connected to ADC
- Time Hardware timer on the microcontroller

Sensor Fusion Block Diagram

	Eight Pieces of Required Data		
Data that uses Sensor Fusion	STEMnaut Survivability	Temperature of landing site	Data with a single source
	Apogee Reached	Orientation of on-board STEMnauts	
	Landing velocity, G-forces sustained	Time of landing	
	Maximum velocity	Battery check/power status	

Software Design

LightAPRS with Atmega1284P-AU Microcontroller

- Timers 2x 16-bit hardware timers (one dedicated to time of landing)
- **I2C Pins** 1x set available on LightAPRS
- Core 1x Low-Power 8-bit AVR Microcontroller

Payload Software Requirements

- Time Sensitive Sensor readings, Sensor Fusion, Data Loging
- I2C Sensors 5xIMU, Altimeter
- **Simultaneous** Flight Monitoring, Sensor Fusion, Data Interpretation, Logging

ZenithOS Framework

- Multitasking Allows for multiple independent programs: Flight monitor, Data logger, Sensor fusion, Data interpreter
- Resource Allocation Manages tasks, logging, CPU time, and peripheral requests for multiple programs
- User Interface Terminal interface allows the user to start/stop programs, run diagnostics, and send commands at runtime
- Hardware Abstraction A single implementation can be thoroughly tested and used by all programs

ZenithOS Block Diagram

Donovan

Dwight

Acceptable

Project Targets

2025 NASA Student Launch: Payload